
http://www.dwheeler.com

1

David A. Wheeler
dwheeler@dwheeler.com

http://www.dwheeler.com/secure-programs

March 30, 2003

http://www.dwheeler.com

2

� Contents: Lessons learned on how to write secure
applications, based on past exploits (lots of detail)
� Not how to break into software
� Not how to configure existing software/systems

� Secure applications have inputs from untrusted
users (setuid/setgid, daemon, web app, viewer,�)
� Some recommendations don�t apply to some app types

� My goal: Make software secure from attackers
� Open Source Software not immune (sendmail, wu-ftpd)
� People can�t do it if they don�t know how
� Please, teach others this material!

http://www.dwheeler.com

3

� What is your security environment?
� What threats, and how severe? Who�s not trusted?

What assumptions? What environment (platforms,
network)? What organizational policies? What assets?

� What are your product�s security objectives?
� Confidentiality (�can�t read�)
� Integrity (�can�t change�)
� Availability (�works continuously�)
� Others: Privacy (�doesn�t reveal�), Audit, �

� What functions and assurance measures are needed?
� Common Criteria useful checklist of requirements

http://www.dwheeler.com

4

2. Avoid Buffer Overflow
3. Program Internals/

Design Approach
6. Language-Specific Issues
7. Special Topics

1. Validate
all Input

5. Send
Info Back
Judiciously

4. Carefully Call Out
to Other Resources

http://www.dwheeler.com

5

� Validate all input from untrusted sources
� Determine what�s legal, reject non-matches
� Don�t do the reverse (check for just illegal

values); �there�s always another illegal value�
� Use known illegal values to test validators

� Limit maximum character length
� Next: Various data types & input sources

http://www.dwheeler.com

6

� Watch out for special characters
� Control characters, including linefeed, ASCII NUL
� Metacharacters for shell, SQL, etc. (e.g., *, ?,\, ",�)
� Internal storage delimiters (e.g., tab, comma, <, :)
� Make sure encodings (e.g., UTF-8, URL encoding) are

legal & decoded results are legal
� Don�t over-decode (i.e., don�t decode more than once

�unnecessarily�)

� Numbers: check min & max; min often 0

http://www.dwheeler.com

7

� Sendmail debug flags: -dflag,value
� Sendmail �d8,100 sets flag #8 to value 100
� Name of config file (/etc/sendmail.cf) stored in data

segment before flag array; that file gives /bin/mail path
� Sendmail checked for max but not min flag numbers,

since input format doesn�t allow negative numbers
� int >= 231 considered negative by C on 32-bit hosts
� Sendmail �d4294967269,117 �d4294967270,110

�d4294967271,113 changed �etc� to �tmp�
� Attacker creates /tmp/sendmail.cf which claims local

mailer is /bin/sh; debug call gives root shell to attacker
f \0 � flag0 �c.liamdnes/cte/�

tmp

http://www.dwheeler.com

8

� Email addresses: Complex, see RFCs 2822 & 822
� Filenames:
� If possible, omit �/�, newline, leading �.�.
� Omit �../� from legal pattern
� Where possible, don�t glob (*, ?, [], maybe {})

� Cookies: Check if domain is correct
� HTML: Prevent cross-site malicious posting,

takeover of format (limit tags & attributes)
� URIs/URLs: Validate first; will it be cross-posted?
� Locale: [A-Za-z][A-Za-z0-9_,+@\-\.=]*

http://www.dwheeler.com

9

� Command line:
� Don�t trust any value of command line if attacker can

set them � including argv[0]
� Environment Variables:
� Environment variables inherited; could they be from an

attacker, even indirectly?
� Local attacker can set anything, even undocumented

variables with effects on the shell or other programs
� Some variables may be set more than once; this may

circumvent checking
� Only solution: Extract and erase at trust boundary

http://www.dwheeler.com

10

� File Descriptors:
� (setuid/setgid) Don�t assume stdin/stdout/stderr are

open!
� File Contents:
� Don�t trust files that can be controlled by untrusted

users (e.g., configuration files)
� Cookies & HTML form data:
� Users can set them to arbitrary values; if you care,

include authenticators and check them
� Other input: current directory, signals, memory

maps, System V IPC, the umask, filesystem

http://www.dwheeler.com

11

� Web applications: Limit GET commands
� Ignore/verify GET commands if it�s not just a

simple query (e.g., changing data, transferring
money, signing up/committing something)

� It may be a maliciously created cross-posted
link, possibly on your own site

� Limit Valid Input Time/Load Level

http://www.dwheeler.com

12

2. Avoid Buffer Overflow
3. Program Internals/

Design Approach
6. Language-Specific Issues
7. Special Topics

1. Validate
all Input

5. Send
Info Back
Judiciously

4. Carefully Call Out
to Other Resources

http://www.dwheeler.com

13

� Buffer Overflow
� Occurs when an attacker can cause data (usually

characters) to be written outside a buffer�s boundaries
(usually past its end), overwriting previous values

� If buffer is on the stack, also called �stack overflow� or
�smashing the stack�; can change the return address and
provide code you�d like it to return to and run

� Possible because C/C++/asm don�t autocheck bounds
� Often allows attackers to modify data and/or force

arbitrary code to run
� Common : More than half of all CERT advisories 1998-

1999; 2/3 said leading cause in 1999 Bugtraq survey

http://www.dwheeler.com

14

�Text�
(e.g., instructions &

read-only data)

Data
(e.g., global
variables)

Heap Stack

Low addresses High addresses

b

[Aleph One]

a
R

et
ur

n
ad

dr
es

s

Sa
ve

d
fr

am
e

pt
r

bu
ff

er
1

Overflow overwrites

void function(int a, int b) {
char buffer1[5];
/* imagine we�re here */

}

void main() {
function(1, 2);

}

http://www.dwheeler.com

15

� Wu-ftpd realpath vulnerability (<2.4.2)
� Realpath() canonicalizes pathname (eliminating �/../�..)
� Realpath() implementation internally used fixed-length

buffer and didn�t prevent length from being exceeded
� Attacker with ftp write access could create arbitrarily

long path (e.g., mkdir AAA�; cd AAA�; then repeat)
� At end of path, attacker created filename with return

address and machine code to run (e.g., �run shell�)
� When ftpd called realpath() to find real path, instead of

returning, the function ran arbitrary code supplied by
the attacker (e.g. root shell)

http://www.dwheeler.com

16

� Avoid or carefully use risky functions
� gets(), strcpy(), strcat(), *sprintf(), *scanf(%s)..

� Alternatives: fixed-length vs. dynamic
� Choose an approach, e.g.:
� Standard C fixed-length: strncpy(), strncat(), snprintf()
� Standard C dynamic length: malloc(), �
� Strlcpy/strlcat (fixed): easier to use than strncpy
� Libmib (dynamic, separate library, rename if modify)
� C++ std::string (not when converted to char*)

http://www.dwheeler.com

17

� Secure the Interface (�can�t circumvent it�)
� Simple, narrow, non-bypassable; avoid macro langs

� Minimize privileges
� Minimize privileges granted (setgid not setuid, run as

special user/group not root, restrictive file permissions,
limit/remove debug requests, limit writers)

� Permanently give up privilege as soon as possible (e.g.,
open TCP/IP port, then drop completely)

� Minimize time privilege active
� Minimize the modules given the privilege: break

program up to do so
� Consider using FSUID, chroot, resource limiting

http://www.dwheeler.com

18

� Use safe defaults
� Install as secure, then let users weaken security if

necessary after initial installation
� Never install a working �default� password
� Install programs owned by root and non-writeable by

others (inhibits viruses)

� Load initialization values safely (e.g., /etc)
� �Fail safe�: stop processing the request if

surprising errors or input problems occur

http://www.dwheeler.com

19

� Avoid race conditions
� Occur when multiple processes interfere with

each other; an attacker may be able to exploit it
� Races can be between secure program

processes, or with an attacker�s process
� Don�t use access() to check if it�s okay and then

open(); after the access() things may change!
Is X a normal file
owned by user U?

Append
text to XMake X a symbolic

link to /etc/passwd

http://www.dwheeler.com

20

� Watch out for temporary files in shared directories
(common race condition)
� /tmp and /var/tmp are shared by all; attackers can often

exploit this, e.g., by adding symlinks or their files
� If possible, move to unshared locations (e.g., ~)
� Shared directories must be sticky: test first
� Repeatedly (1) create �random� filename, (2) open

using (O_CREAT|O_EXCL) and minimal privileges, (3)
stop on success; NFSv2 requires more magic

� Use fd�s; reopening with same name vulnerable
� tmpfile(3) unsafe on some, tmpnam(3) often unsafe

http://www.dwheeler.com

21

� Trust only trustworthy channels
� �From� IP addresses & email sources can be forged
� DNS entries come from external entities

� Prevent Cross-site Malicious Content
� Filter, or encode

� Counter Semantic Attacks
� http://www.bloomberg.com@badguy.com
� Confirm oddities, give more visual cues

http://www.dwheeler.com

22

� Follow good security principles (S&S), e.g.:
� Keep it simple
� Open design: Encourage others to review it!
� Complete mediation: Check every access. If

it�s client/server, server has to re-check
everything

� Fail-safe defaults: Deny by default
�Make it easy/acceptable to use: �no urine tests�

http://www.dwheeler.com

23

5. Send
Info Back
Judiciously

2. Avoid Buffer Overflow
3. Program Internals/

Design Approach
6. Language-Specific Issues
7. Special Topics

1. Validate
all Input

4. Carefully Call Out
to Other Resources

http://www.dwheeler.com

24

� Call only safe library routines
� If they�re not portably safe, write your own

� Limit call parameters to valid values
� Escape/forbid shell metacharacters before calling

shell; indeed, avoid calling the shell!
� & ; ` � \ � | * ? ~ < > ^ () [] { } $ \n \r
� Whitespace are parameter separators � problem?
� Other possible problems include: #, !, -, ASCII NUL
� Shell often called indirectly (popen, system, exec[lv]p)

� Escape/forbid other tools� metacharacters (SQL)

http://www.dwheeler.com

25

� Call only interfaces intended for programs
� Avoid calling mail, mailx, ed, vi, emacs; they all have

exotic interactive escape mechanisms (~, :, !)
� If you do use them, learn their escape mechanisms first

and prevent them

� Check all system & library call returns
� Encrypt sensitive information
� E.G., use SSL/TLS for private data over Internet
� Encrypt data on disk if it�s especially critical

http://www.dwheeler.com

26

� Minimize feedback
� Log failures - don�t explain them to untrusted users
� Don�t send program version numbers

� Handle disk full/unresponsive recipient
� Control data formatting (�format strings�)
� WRONG: printf(stringFromUntrustedUser);
� RIGHT: printf(�%s�, stringFromUntrustedUser);
� Attacker may use %n (writes into variables), select

�parameters� to output arbitrary stack values, etc.
� Currently a major problem

http://www.dwheeler.com

27

� PHP < 4.0.3 error logging format string:
� If error logging enabled, php_syslog function

called with user-provided data
� Php_syslog called printf, using that data as the

format string (!)
� Attacker could cause process to overwrite its

stack variables with arbitrary data
� Allowed remote attacker to �take over� PHP

process (usually with web server�s privileges)

http://www.dwheeler.com

28

2. Avoid Buffer Overflow
3. Program Internals/

Design Approach
6. Language-Specific Issues
7. Special Topics

1. Validate
all Input

5. Send
Info Back
Judiciously

4. Carefully Call Out
to Other Resources

http://www.dwheeler.com

29

� Perl:
� Enable �w (warn) and �T (taint) options
� Use 3-parameter open() to disable excessive magic

(man perlopentut for more)
� �use strict�

� Python:
� Check uses of exec, eval, execfile, compile
� Function input is very dangerous

● Don�t use it for untrusted input; use e.g., raw_input

� Don't use rexec or Bastion

http://www.dwheeler.com

30

� Shell (sh, csh)
� Don�t use them for setuid/setgid; nonportable
� Avoid using for secure programs unless heavily

protected; too many ways to exploit
● Filenames with whitespace, control chars, beginning with �-�
● Magic environment variables (e.g., IFS, ENV)

� Trusted programs okay if all input from trusted sources
� PHP
� Set register_globals to �off�
� Use PHP 4.1.0+ and use $_REQUEST for external data
� Filter data used by fopen()

http://www.dwheeler.com

31

� C/C++
�Make types as strict as possible

● Use enum, unsigned where appropriate
● Watch out for char; signedness varies

� Turn on all warnings, and resolve them
� Use gcc __attribute__ extension to mark

functions that use format strings
� Remember buffer overflow issues!

http://www.dwheeler.com

32

� Random Numbers: use /dev/(u?)random
� Don�t send passwords �in the clear� over Internet
� Web Authentication of Users
� For intranets, use intranet authentication system (e.g.,

Kerberos)
� Web basic authentication is in the clear � avoid it
� Currently client-side certificates are poorly supported,

so for many, use �Fu�s approach� to authenticate web
users (see document for details). Uses passwords over
encrypted link, returns a temp cookie used for
authentication. Not ideal, but it�s practical for most sites

http://www.dwheeler.com

33

� Protect Secrets (passwords, keys) in user memory
� Disable core dumps via ulimit; perhaps mmap to

prevent swapping out the data; don�t use immutable
strings to store passwords; erase quickly once used

� Use existing unpatented crypto algorithms and
protocols; don�t invent your own
� SSL/TLS, SSH, IPSec, OpenPGP (GnuPG), Kerberos
� AES or Triple-DES (not in ECB mode-use CBC), RSA
� For hashing, move from MD5 to SHA-1
� For integrity checking or MAC, use HMAC-SHA-1

� Have �development� branch (gives time to audit)

http://www.dwheeler.com

34

� Source Code Scanners
� Flawfinder, RATS, LCLint, cqual

� Run random tests to try to crash
� BFBTester

Flawfinder version 1.21, © 2001-2002 David A. Wheeler

Test.c:32 [5] (buffer) gets:

Does not check for buffer overflows. Use fgets() instead.

...

http://www.dwheeler.com

35

� Do it right! Avoid well-known problems:
� Validate all input: Is it all legal?
� Avoid buffer overflow
� Structure program: Minimize privileges, avoid race

conditions
� Carefully call out: Shell/SQL metacharacters, check all

system call return values
� Reply judiciously: Minimize feedback, format strings

� You�ll avoid >95% of reported vulnerabilities
� Be paranoid. They really are trying to get you
� See: http://www.dwheeler.com/secure-programs

http://www.dwheeler.com

36

http://www.dwheeler.com

37

� �How to write secure programs� is almost never
taught in schools, even though it�s critical
� This is criminal! This should be a CS/SE requirement
� Teach at college & to developers in high school too

� Few books on the topic
� Unnecessarily hard to write secure code in C
� Consumers don�t select products based on their

real security-so real security isn�t provided
� Security costs more (in $, time, installation effort)

http://www.dwheeler.com

38

� Software licensed in a way giving the freedom to:
� (0) run the program, for any purpose
� (1) study how the program works, and adapt it to your

needs (requires access to the source code)
� (2) redistribute copies so you can help your neighbor
� (3) improve the program & release your improvements

to the public, so that the whole community benefits
� �Open Source Software� often emphasizes belief

in better results (e.g., higher reliability & security)
� �Free Software� emphasizes freedom for users
� See http://www.dwheeler.com/oss_fs_refs.html

http://www.dwheeler.com

39

� Some claim OS/FS gives more info to crackers
� But crackers can disassemble & don�t need source code

to attack. Transparency helps the �good guys� more

� OS/FS can be better over time
� After �good guys� have found/fixed problems

� But many caveats:
� People have to actually review the code
� Reviewers must know how to find insecure code
� Problems found must be fixed, distributed, applied

http://www.dwheeler.com

40

� Hacker: One who enjoys exploring the details of
programmable systems & stretching their abilities;
enjoys programming; (or) an expert or enthusiast*

� Cracker: One who breaks security on a system*
� Attacker: One who attacks a system
� Note the distinctions:
� Not all hackers are crackers (e.g., white hats)
� Not all crackers are hackers (e.g., script kiddies)
� Not all attackers are crackers (e.g., DoS attacks)

� The media often don�t get it
* The New Hacker�s Dictionary (The Jargon File), ed. Eric S. Raymond

http://www.dwheeler.com

41

You may copy this set of slides, unchanged
and in their entirety, for personal, non-
profit, and public education (e.g.,
university) use.

All other rights reserved; contact the author
for other uses.

	ProgrammingSecure Applications forUnix-like Systems
	Introduction
	First: What are YourSecurity Requirements?
	Abstract View of a Program
	Validate All Input:General
	Validate All Input:Strings and Numbers
	Validate All Input:War Story (Check Minimums!)
	Validate All Input:Other Data Types
	Validate All Input:Consider All Data Sources
	Validate All Input:Consider All Data Sources
	Validate All Input:Miscellaneous
	Abstract View of a Program
	Avoid Buffer Overflow:The Problem
	Avoid Buffer Overflow:Stack Smashing Diagram
	Avoid Buffer Overflow:War Story
	Avoid Buffer Overflow:The Solution
	Program Internals/Design Approach (1 of 6)
	Program Internals /Design Approach (2 of 6)
	Program Internals /Design Approach (3 of 6)
	Program Internals /Design Approach (4 of 6)
	Program Internals /Design Approach (5 of 6)
	Program Internals /Design Approach (6 of 6)
	Abstract View of a Program
	Calling Out to Other Resources
	Calling Out to Other Resources
	Output Judiciously
	Output Judiciously:War Story
	Abstract View of a Program
	Language-Specific Comments
	Language-Specific Comments
	Language-Specific Comments
	Special Topics
	Special Topics
	Tools
	Conclusions
	Backup Material
	Why Do Programmers Write Insecure Programs?
	What’s Open Source Software/Free Software?
	Is Open Source/Free SoftwareGood for Security?
	Hacker, Cracker, Attacker:These Words Have Meanings
	Copyright © 2000-2003David A. Wheeler

