encodef(1) User commands encodef(1)

NAME
encodef — encode/decode filenames or similar data

SYNOPSIS
encodef[options..] [-- [filenames.]]

decodef[options..] [-- [filenames.]]

DESCRIPTION
POSIX/Unix/Linux filenames and pathnames can include nearly-arbitrary sequences of bytes (octets),
including newlines, tabs, terminal control sequences, spaces, sequences that @& inothie current
locales encoding, and so onMany text-processing utilities cannot easily process arbitrary filenames
directly, e.g., they may misinterpret a newline in the middle of a filename as the end of the fileSaomz
tools can generate or accept filenames terminated by a null byte, butaxtaorocessing utilities cannot
easily process these either.

The encodefand decodefutilities male it much easier to process arbitrary filenam&he encodefutility

accepts filenames and sends to stdout encoded filenames that are much easier torpedessdeiutil-

ity reverses this; it accepts encoded filenames and sends to stdout the decoded filenames that can be directly
used. Thesaetilities can be used for arbitrary data, not just filenames, bytatkespecifically designed to

work well with filenames.

More specificallythe encodelutility accepts 0 or more filenames from its command line if an "--" end-of-
options argument is provided; or it reads from stdin instead if no "--" idde. Itsends to stdout the
encoding of each filename, in orgetth each encoded filename terminated byaline. If stdin is read,

the filenames are separated by a null byte (newline cannot be used since filenames can wiahed ne
The last filename from stdin mayt need not, end with a null byte. This processing of stdin enables easy
processing or transition from filename lists where filenames are terminated or separated by a eyl byte.
default,encodelises percent encoding (e.g., %hh), though other encodingsdaéle.

When encoding, the tool must determine which bytes (characters) are encoded.ady, €le€odef

encodes most charactesscept A-Z, a-z, 0-9, <slash> (/), <period> (.), <underscore> (_), and non-leading
<hyphen> (-). A dash is leading if it is at the gmning of a name or immediately follows a forward slash.

This encodes most characters, and is the default because it results in the safest possible filenames, reducing
the risk of errors or security vulnerabilities due to mishandled filenamesarticular this default escapes:

(1) the control characters including newline, tab, and terminal control characters, (2) the space, oaracter
shell users can use the default IFS setting, and (3) the shell globbing characters Araaddtion, by

default all of the unescaped characters and the escape characters are in the POSIX "portable character set",
so they mustexist in ary given locale. (Thisalso means that all other letters are encodetckhis is often a

good thing; there is no way to be certain of a filenamgaracter encoding in the general caséajious

options (see -C and -S) control which characters are encoded.

The decodef utility reersesencodefthe encodef -d (decode) option makes encodef perform the work of
decodef. ltaccepts encoded filenames from the command line (or from stdin if no "--" optiovidegho

and decodes the filenames back to their original form, sending the result to Htdalt.a single filename

is provided, the output on stdout is simply the undecoded nshen reading from stdin, each filename is
terminated by newline or null byte; the last flename need not be termirByedefault, if multiple file-

names are provided, the output on stdout is the undecoded names separated by a null byte (since this is the
only value that cannot occur in a filename; the last value is not terminated with a null @g&e)dd

option, -Y, gopends the letter Y to the end of each filename, and is needed to properly decode filenames
using shell command substitution (as explained below).

Several different filename encodings are supported:

 -U: URI encoding, aka URL encoding aka percent encoding. In this encoding, the percent character %
is the escape charactand %hh represents the byte with the hexadecimlalevhh (in either upper or
lower case). Either %% or %25 is accepted as an encoding of the percent character %, but %25 is
what is generated when encoding %his encoding is described and used in IETF RFC 3986s

Wheeler 2010-05-10 1

encodef(1)

User commands encodef(1)

particular option flag was selected because -U is not used by GNU xargs, and %U is not used in GNU
printf(1); GNU is both common and very feature-rich, so it seemedylithat these flagalues
wouldn’'t be wsed by othersUnfortunately there dort seem to be manflags that arebh'aready used

by find’s printf; GNU find -printf already uses %p, ¥88u, and %U for other things.

-B: traditional backslash encodingn this encoding, the backslash character \ is the escape character
The expression \ddd, where ddd is a 1 to 3 digit octal value, can represent an arbitrary byte; note that a
leading 0 is not required, so byte 255 is represented as \377, and not \0377 as with peititf(Tjie

usual escape sequences are also accepted from POSIX: "\\' (for backslash itself), \a’;,\ln,,"\f

\r', \t', and '\v'. When decoding, a backslash folled a non-alphanumeric character is replaced by
that characterso \" encodes ". As an extension, this decoder also accepts \xHH as a representation of
the hexadecimal number HH in upper owés case (the encoder does not generate this, but some
other programs accept this representation; localedef(1) supports this notatiorarfgeled. This
encoding for backslash is used by printf(1) format strings, printf(3), C, C++, tr(1), andatiem

tools. Havever, bewae of providing encoded filenames as the format string values to most such tools
directly, because thewill often interpret other characters such as '%’ inaywthat will cause them to

fail (and in some cases can lead to a security vulnerabillfy® decodeutility doesnotinterpret other
characters li "%’ specially and thus does not kia tis risk. This isnotthe encoding used by printf

%b (aka "pfb" or "extra 0" encoding). This particular option flags welected because -B is not used

by GNU xargs, and %B is not used in GNU printf(1) (%b is part of the POSIX standatats df-

ferent). GNUfind -printf does not use %B, which is nice (so that COULD be used).

-b (extra 0): printf(1) %b (pfb) encoding. This is the format decoded by PO$ixtf(1) %b format
(butnotby the printf(1) format string itself, nor the format used by other POSIX tools). In this encod-
ing, the backslash character \ is the escape chardtterexpression \0ddd, where ddd is a 0 to 3 digit
octal value, can represent an arbitrary byte; note that a leading "extrav@ys atquired with octal
codes, so byte 255 is represented as \0377 and not \377. It also accepts and generates the POSIX
encodings '\V' (for backslash itself), \a’, "\b’, "\f’, \n’, "\r’, "\t’, and '\v'. Note that printf(1) %b does

not portably accept some other common escape patterns, such as \" or \' avaddip a spaceThis

is an odd encoding, and not what maeople think it is.Its main advantages are that it is portable
(because it is part of POSIX.1-2008 printf(1)), widely implemented, and offeierf in shells
(because printf(1) is typically a shellili-in). This particular option flag was selected because -b is
not used by GNU xargs, and %b is the POSIX-required name for thantgbeintf(1). Unfortunately,

GNU find -printf already uses %b for something else. (Older versions of this tool use -e for "extra 0".)

Note that for purposes of these utilities, encodinge Hittle to do with the character encoding used for
internationalization. 1POSIX, filenames are simply sequences of bytes; there is no standard mechanism to
determine what character encoding was used to encodexafigname. Theauthor recommends that
users alays use UTF-8 as the character encoding to encode all filenames.

OPTIONS

Options can controlaictors such as which encoding scheme is used (see -B, -b, -U), which bytes will be
encoded (see -C and -S), and the format of the results (see -Y). The following options are supported:

-B

Wheeler

Use traditional backslash encodinghe expression \ddd, where ddd is a 1 to 3 digit octhiey
represent an arbitrary byt&he encoder produces, and the decoder accepts, the xistesstons
V' (for backslash itself), \a’, \b’, "\f’, \n’, "\r’, "\t’, and '\v’. The decoder also accepts '\" (for
double quote), V' (for single quote), and "\ ' (for spaceAs an extension, this decoder also
accepts \xHH as a representation of the hexadecimal number HH in uppe&reorchse (the
encoder does not generate this, but some other programs accept this represevwhéargncod-
ing, this is the encoding of tlmtput when decoding, this is the encoding of itmgut.

Decode. Ifpassed as an option to encodef, makes it work as decodef.

Use the "extra 0" (aka printf %b or pfb) encodifithis is the encoding accepted by the printf %b
format specifierthough it is not the same as masther POSIX tools. The expression \0ddd,
where ddd is a 0 to 3 digit octadlue, can represent an arbitrary byte; note that a leading "extra" 0

2010-05-10 2

encodef(1) User commands encodef(1)

is aWways required with octal codes. It also accepts and generates the POSIX encodings '\\' (for
backslash itself), \a’, \b’, "\f, \n’, \r’, '\t’, and "\v'. Note that printf %b is not guaranteed to
accept \" and other escape sequences. When encoding, this is the encodingugduh&hen
decoding, this is the encoding of tinput

-C (Encoder only) Only encode control characters and the "escape" character (\ dir &&o
encodes "-" if it is at the lggnning of a pathname component, to reduce the risk from leading "-"
(these are often confused with option flags). See also -S.

-S (Encoder only) Lile -C, but also encode the byte representing the space charBuigis useful
when handing filenames to the shell; the default IFS values (space, tab, newline) are all encoded.
See also -C.

-U Use percent encoding (aka URL encoding), where %HH represents the hexadecimal value HH.
When encoding, this is the encoding of theput when decoding, this is the encoding of the
input

-Y (Decoder only) Y-append mode. Append the letter 'Y’ after the end of each filename in the out-
put. Thisunusual mode supports shell scripts. Shell command substitution stripsliofg nev-
lines, which could corrupt filenames that end witlvlivee. If a shell script uses command substi-
tution to irvoke the decoder directlyit should use this option to ensure that the last character is
always 'Y’ and then strip dfthe trailing 'Y'. ("X" is not used as the trailing letter;sitheing
reserved for options wolving xargs and XML.)

EXIT STATUS

ENVIRONMENT

FILES

CONFORMING TO
Percent encoding is defined in IETF RFC 3986. POSIX.1-2008 defines both of the backslash quotation
systems supported by printf(1); in particu®SIX.1-2008 XBD Chapter 5 table 5-1, page 121 defines '\V
(for backslash itself), \a’, \b’, \f’, \n’, '\r’, "\t’, and "\v'".

NOTES
The encoder and decoder can process arbitrary filename lengths, but the underlying filesystecesinterf
and utilities will hae ©me sort of limit.

BUGS
The fact that POSIX systems permit flenames to contain control characters\ikne, return, tab, and
ESC (used for terminal escapes) could be considered a bug all by itself; forbidding them would reduce the
need for this pair of tools. If POSIX systems couldanencounter bytes 1 through 31 in filenames, file-
name processing would Ibeuchsimpler For example, once a shell script sets IFS to newline and tab (e.g.,
near its beginning):
IFS=""printf \n\t""
It could loop wer dl filenames in the current tree with the much simpler expression:
for fin ‘find ."; do ...

POSIX does not require that filenames meet a particular character encoding such as UTF-8; we recommend
that users aays use UTF-8, to simplify worldwide exchange of data.

Currently this doeshhaveoptions to control which bytes will be encoded; I'm sure that will change.

Wheeler 2010-05-10 3

encodef(1) User commands encodef(1)

EXAMPLE

You can display the filenames from the current directory down, encoded in percent encoding, with:
find . -exec encodef -p -- {} \+

You can loop @er arbitrary trees of files in shell with encodédflere is one example, which uses -e encod-
ing (which is supported by the typically built-in printf(1)$ince newline, tab, and space are all encoded by
default, you can use the defit value of IFS and still va @rrect filenames. Note the "trailing Y" trick in
the second line; filenames can end iwlivee, and command substitution strip$ tohiling newlines, so you
need to something lkthe following if flenames might end with a newline:
for ef in ‘find . -exec encodef -e -- {} \+' ; do

filename="$(printf "%bY" "$ef")" ; filename="${filename%Y}" ...

Here is a similar loop, u using the percent encoding, and showing km use decodef. Note that when
decoding filenames via shell command substitution, you should normally use -Y or filenames with trailing
newlines will be corrupted:
for ef in ‘find . -exec encodef -p -- {} \+' ; do

filename="$(decodef -pY -- "$ef")" ; filename="${filename%Y}" ...

You can use the "xgsf" utility to simultaneously decode the filename and run a program using the file-
name; this is sometimes easidhe "xargsf" utility is simply a ariant of xargs that decodes the filenames
provided (per decodef), and then runs the indicated program(s) on those filenames. (In the &iture, it’
hoped that xargs euld add the basic features of decodef, but having a separate "xargsf" lets people easily
experiment.) Herés an example:
for fin find . -exec encodef -p -- {} \+' ; do

printf "%s" "$f" | xargsf -p Is -I

AUTHOR
Written by David A. Wheeler.

SEE ALSO

Wheeler

printf(1), iconv(1), sh(1), find(1), xargs(1).
See its web page http://www.dwheeler.com/encodef

2010-05-10 4

